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Abstract
This study explores the application and comparative performance of reinforcement learn-
ing (RL) algorithms in embedded systems versus traditional computing environments,
focusing on autonomous systems. We implement and evaluate Q-Learning and Deep Q-
Learning across diverse hardware setups, including the NVIDIA Jetson Nano and high-
power desktop computers. Our methodology involves training these algorithms to maintain
equilibrium in simulated environments, with an emphasis on computational efficiency and
resource constraints in embedded systems.

The results demonstrate that while traditional environments offer faster computation,
embedded systems can achieve comparable accuracy in specific tasks, albeit at a slower
pace, and also do this at higher energy efficiency. This research highlights the trade-
offs between execution time and performance across different computing platforms. We
also explore software optimizations, like using Numba for Q-Learning, which significantly
reduces execution time on embedded systems. The findings suggest practical applications
and potential optimizations for RL in environments where computational resources are
limited, paving the way for more efficient autonomous systems in real-world applications.

Keywords
Reinforcement Learning, Embedded Systems, Autonomous Systems, Machine Learning

I



Table of Contents
1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4

2.1 Autonomous Robotic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Q-Learning and Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Proposed Optimization Techniques . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Practical Implementations of RL on Embedded Systems . . . . . . . . . . . 8

2.6 Performance Metrics and Evaluation . . . . . . . . . . . . . . . . . . . . . . 8

3 Implementation 10

3.1 Training Enviroment and Hardware . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Simulated Environment and Physical Benchmarking . . . . . . . . . . . . . 10

3.2.1 Implementation of the Simulated Environment . . . . . . . . . . . . 11

3.3 Implementation of Q-Learning . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 State Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Action Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3.3 Updating the Q-table . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Software Optimizations for the Q-Learning implementation . . . . . . . . . 16

3.5 Implementation of Deep Q-Learning . . . . . . . . . . . . . . . . . . . . . . 16

3.5.1 Implementation of Deep Q-Learning with fixed Q-Value Targets . . 18

3.5.2 Loss Function for DQL Implementations and Differences . . . . . . . 18

II



4 Experiment 19

4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Implementation Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Reward Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Custom Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Metrics Collection on The Embedded System . . . . . . . . . . . . . 21

4.3.2 Metrics Collection on The Desktop Environment . . . . . . . . . . . 21

5 Results and Discussion 22

5.1 Reward Plots for Classic Q-Learning and Optimized Q-Learning Using
Numba . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2 Reward Plots for Deep Q-Learning and Deep Q-Learning with fixed tar-
get values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Benchmark Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 Jetson Nano . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.2 Average Benchmark Metrics . . . . . . . . . . . . . . . . . . . . . . . 25

5.3.3 Machine Learning Server . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.4 Average Benchmark Metrics . . . . . . . . . . . . . . . . . . . . . . . 28

5.4 Performance per Watt for Embedded System and Machine Learning Server 31

5.5 Execution Times for Embedded System and Machine Learning Server . . . 32

6 Conclusion 35

III



1. Introduction
The advancement of autonomous systems is transforming how we interact with technology,
reshaping industries, and redefining efficiency in our daily lives. As these systems gain
complexity and are expected to perform tasks with higher levels of autonomy, the role
of efficient machine learning algorithms, particularly in the domain of reinforcement
learning (RL), becomes increasingly pivotal. RL stands at the forefront of the revolution
in autonomy, providing the foundation for machines to learn from interactions and make
decisions that mirror human judgment, often surpassing it in precision and reliability [1].

Our thesis explores the implementation and comparative analysis of RL algorithms
within two distinct computational paradigms – the field of embedded systems and edge
computing, and traditional desktop computing environments made for heavy computa-
tion. By investigating the performance and resource utilization of these algorithms during
the training and operation phases, this research seeks to unveil insights into their adapt-
ability and scalability across varying hardware capabilities, as well as what can be done
to more easily optimize the algorithms given certain resource constraints, and what the
implications of this are.

Our exploration is set against the backdrop of autonomous Q-learning systems and
deep Q-learning systems, where the balance between computational resource constraints
and the demand for real-time processing poses a unique challenge. The study is tai-
lored to assess how different computing environments influence the efficiency and speed
of learning, and ultimately the performance of autonomous control systems. Use cases of
such systems are increasingly prevalent, encompassing autonomous vehicles, aerial drones,
and robotic systems in various domains. These applications span a spectrum of industries,
including but not limited to surveillance [2], agriculture [3], logistics [4], and healthcare [5].

1.1. Problem Definition
Our research aims to address the challenge of applying Q-Learning and Deep Q-Learning
in resource-constrained embedded systems compared to high-power computing environ-
ments. We investigate the performance trade-offs, including processing power, energy use,
and training time of these reinforcement learning methods when adapted to smaller, less
powerful systems. Through benchmarking in scenarios like controlling an inverted pen-
dulum robot, our goal is to uncover strategies that mitigate the limitations of embedded
systems in running complex reinforcement learning algorithms. Our efforts will try to
enhance the feasibility and efficiency of deploying autonomous systems in environments
where computing resources are limited.
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1.2. Method
Our method involves comparing Q-Learning algorithm performance on an NVIDIA Jet-
son Nano (representing embedded systems) against traditional desktop computing setups
in training a cart-pole system to maintain equilibrium. This experiment highlights con-
trol challenges and evaluates the algorithm’s adaptability to resource-constrained environ-
ments.

• Experimental Setup: The Jetson Nano is chosen for its computational efficiency
suitable for embedded scenarios, while a high-power computing environment serves
as our benchmark for comparison. The primary task involves the cart-pole, a classic
testbed for illustrating non-linear control dynamics.

• Algorithm Implementation: We implement Q-Learning, favored for its low com-
putational demand and effectiveness in discrete action spaces, across both environ-
ments, and Deep Q-Learning. This involves tailoring the algorithms for optimal
performance within the embedded system’s constraints.

• Performance Evaluation: Key metrics, such as accuracy, energy consumption,
temperature, and efficiency, will be measured during training and operation phases.
This evaluation helps quantify the trade-offs in deploying reinforcement learning in
embedded systems.

• Data Collection and Analysis: Performance data from both setups will be ana-
lyzed to compare the efficacy and practicality of Q-Learning and Deep Q-Learning
in embedded versus resource abundant computing environments, as this analysis
aims to understand the algorithm’s scalability and optimization needs for resource-
limited systems.

• On-device Training Consideration: A significant aspect of our methodology
involves exploring the potential for on-device training within the embedded envi-
ronment. This approach, if viable, could significantly enhance the autonomy and
efficiency of embedded autonomous systems by reducing the need for data transmis-
sion to more powerful external computing resources.

1.3. Motivation
Our project investigates the potential of Q-Learning, a reinforcement learning technique,
for controlling an inverted pendulum (cart-pole) system in resource-constrained embedded
environments, compared to traditional machine learning computing setups. Highlighting
the importance of efficient resource management, we aim to explore how Q-Learning can
manage complex tasks with minimal resources while maintaining accuracy, using the cart-
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pole—a benchmark experiment for non-linear control—as our testbed. Our study is mo-
tivated by the transformative impact of reinforcement learning on autonomous systems,
especially in navigation and adaptation within dynamic environments, as demonstrated
by studies like [6] and [7].

We will evaluate the performance and resource consumption of Q-Learning on an
efficient embedded platform, the OKdo Nano C100, against a more resource-abundant
computing environment. Our research focuses on assessing the trade-offs in performance
metrics like response time, accuracy, and energy usage, aiming to establish whether Q-
Learning can achieve comparable effectiveness in embedded systems as it does in larger
computing environments.

By demonstrating the practicality of Q-Learning for real-time or on-device training in
embedded systems, our work seeks to advance autonomous system development for sce-
narios where computing resources are limited. This could lead to more energy-efficient,
cost-effective autonomous solutions across various applications, addressing the challenges
of speed, efficiency, and power consumption critical to edge-computing devices.

1.4. Research Question

How do Q-Learning algorithms perform in terms of computational efficiency, accu-
racy, and energy consumption on resource-constrained embedded systems, and what are
the implications of these factors on the real-world applicability of training and operating
autonomous systems?
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2. Background
2.1. Autonomous Robotic Systems
An autonomous robot, or autonomous system, is a system which can operate without
the need for human control. Under the course of history, especially in the effort to con-
trol systems to achieve autonomy, practices such as PID control (Proportional-Integral-
Derivative) have been used extensively in such control engineering tasks. The goal of such
algorithms is to manually determine the best course of action for a system depending on
some state, given by its environment, with which it can then mathematically determine
what to do. More efforts are actively being made to automate the learning itself – as op-
posed to just the controlling behavior of the system – using machine learning, specifically
reinforcement learning.

2.2. Q-Learning and Deep Q-Learning
Q-Learning, introduced by Watkins in 1989 [8], stands as a foundational technique in
model-free reinforcement learning, enabling agents to learn optimal actions in Markovian
domains through direct interaction with the environment. This method, relying on the
Q-Matrix, allows an agent to learn without constructing explicit maps of the domain, mak-
ing decisions based on immediate rewards or penalties and the estimated future value of
resulting states. Operating in a discrete action space, Q-Learning systematically explores
all actions across states to incrementally identify the most beneficial actions through a
reward function S × A → R, or Q(s, a), i.e. the set of all possible ordered pairs (s, a),
where s ∈ S and a ∈ A.

Building on the principles of Q-Learning, Deep Q-Learning (DQL) integrates deep
learning to extend the method’s applicability to complex, high-dimensional environments
that are challenging for traditional Q-Learning to handle. Introduced as a significant ad-
vancement by Mnih et al. in 2013 [9], Deep Q-Learning utilizes deep neural networks
(DNNs) as function approximators to represent the Q-value function. This approach en-
ables the algorithm to learn optimal policies over continuous state spaces (not necessarily
present in our practical experiments), addressing the scalability issues faced by traditional
Q-Learning when dealing with large or continuous action spaces.

Deep Q-Learning’s key innovation lies in its ability to generalize over similar states,
reducing the need for the algorithm to experience every possible state-action pair to learn
effectively. This is achieved through the use of a technique known as experience replay,
where transitions are stored in a replay buffer and sampled randomly to update the net-
work. This process breaks the correlation between consecutive learning samples, leading
to more stable and efficient learning. Furthermore, DQL often employs separate networks
for generating the target Q-values during the training process – a technique known as
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target network freezing – to enhance learning stability.

The integration of deep neural networks into Q-Learning facilitates the application
of reinforcement learning in a broader range of real-world tasks, such as autonomous
driving, game playing, and robotics, where the environment’s complexity and the high di-
mensionality of the state space make traditional methods less effective. By leveraging the
representational power of deep learning, Deep Q-Learning not only enhances the agent’s
ability to understand and interact with complex environments but also opens up new pos-
sibilities for the efficiency and adaptability of autonomous systems in both research and
practical applications.

2.3. Literature Review
In preparation for the implementation phase of our research, we conducted an exhaustive
literature review to evaluate the current state of research on the application of Reinforce-
ment Learning (RL) algorithms within embedded systems for controlling autonomous sys-
tems, and cases where optimization techniques have been deployed to further on-device
training and the possible implications and benefits of doing this. This review was aimed at
understanding RL’s performance, efficiency, and adaptability in the context of embedded
systems, which are often resource-constrained environments. The literature review results
also empirically highlighted that the most popular and commonly implemented family of
machine learning for non-linear autonomous systems was Q-Learning.

This literature review laid the groundwork for our research by pinpointing the gaps
in existing knowledge and highlighting areas for potential investigation. The insights
gleaned from this comprehensive review have been instrumental in informing the design
and methodology of our study. Specifically, they have shaped our approach to implement-
ing and evaluating RL algorithms within embedded systems, with a focus on optimizing
performance and practicality for autonomous control applications.

• Proposed Optimization Techniques: We examined studies that have explored
the feasibility and performance of RL algorithms on low-power devices, including
microcontrollers, embedded systems, and edge devices, which focused primarily on
hardware optimizations or distributed approaches for embedded systems commu-
nicating over a shared network. This involved a critical evaluation of the specific
adaptations or modifications to traditional RL algorithms that enable them to op-
erate effectively under the constraints of limited computational power, memory, and
energy availability [10] [11]. Other studies focused on theoretical and applied op-
timization techniques in low-power systems such as embedded systems and mobile
devices [12] [13].

Another study highlights the adaptability and possibility of on-device machine
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learning for embedded systems [14]. This study focused on techniques based on
neural networks and transfer learning, which are less common in Reinforcement
Learning, but still apply to our study as we will later delve into the practical imple-
mentation of Deep Q-Learning, a technique that is potentially more power intensive
but possibly better in regards to time and scope of training. We are also interested
in the trade-offs and potential of complete on-device training of Q-Learning algo-
rithms for embedded systems, with or without transfer learning.

• Practical Implementations of RL on Embedded Systems: Here we review
some practical case studies where RL has been effectively applied within embed-
ded systems for autonomous control [15] [16]. These cases provided insights into
the real-world applicability of RL algorithms in scenarios where power efficiency
and processing capability are critical factors, as well as possible avenues for better
representing the challenges and opportunities in the deployment of RL within con-
strained environments. A study on ”Formalism and Benchmarking” [17] highlights
RL’s effectiveness in autonomous settings without human intervention, emphasizing
its adaptability in dynamic conditions. It discusses designing and benchmarking
RL algorithms for non-episodic training, crucial for embedded systems requiring
continuous adaptation without resets. This method is vital for systems need-
ing long-term, independent control, suggesting that autonomous RL could greatly
improve embedded systems’ performance in applications like industrial automation
and smart infrastructure.

• Performance Metrics and Evaluation: Finally, our literature review assessed
the metrics commonly employed to evaluate the efficacy of RL algorithms in em-
bedded systems. We paid special attention to how metrics that are particularly
relevant to embedded contexts are measured, such as energy consumption (per de-
cision), computational load, and algorithmic convergence rates [11].

2.4. Proposed Optimization Techniques
This is still a novel area, but some previous efforts have been made to uncover potential
optimization techniques for higher-level programming languages using machine learning
or reinforcement learning libraries such as PyTorch and Tensorflow, substituting these for
other more lightweight libraries. A notable approach involves substituting these standard
libraries with more lightweight alternatives, aiming to alleviate the computational burden
on constrained devices. Among the array of innovative techniques, a few have emerged as
particularly promising

• Binarization of Weights: This simplifies the model by converting weights to
binary values, significantly reducing memory requirements and computational com-
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plexity.

• Pre-compilation to Lower-level Languages: By translating models into lower-
level languages, we can optimize execution efficiency, capitalizing on the strengths
of each device’s hardware.

• Conversion of Floating-point Numbers to Fixed-point: This technique ad-
justs the numerical precision of model parameters, offering a balance between per-
formance and resource consumption.

• Pruning: By systematically removing less important connections or weights within
the network, pruning helps in streamlining the model, further enhancing its suit-
ability for resource-constrained environments.

However, the majority of the efforts made in this research is transferring already pre-
trained models or weights from one, less resource constrained, environment to one that has
severe limitations in terms of processing and GPU power [14]. As previously suggested by
F. Svoboda et al. [12], with regards to Deep reinforcement learning on resource constrained
devices:

It is unclear for example, how well these algorithms would perform when
potential avenues of optimization are explored – and if acceptable control and
decision performance could be maintained within the constraints of tinyML
devices.

A critical question could be how these techniques generalize across different RL algo-
rithms beyond Deep Q-Networks (DQN), including those not covered in the paper. Can
these optimizations be effectively applied to a wide range of RL algorithms used in au-
tonomous systems, and what are the performance trade-offs? We will not be delving into
this in our thesis necessarily, but it is important to question nonetheless, as we will be
primarily focusing on classical Q-Learning and on-device training.

It would be interesting to explore how these optimizations impact the learning dy-
namics and convergence rates of the RL algorithms. For example, does the reduction
in precision or the minimization of redundancy affect the stability or speed of learning,
and how does this vary between embedded and traditional computing environ-
ments?
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2.5. Practical Implementations of RL on Embedded Sys-
tems

There are many benefits to reinforcement learning on embedded systems. Data and pro-
cessing is near the source, enhanced privacy and security, increased energy efficiency, and
cost-effectiveness. Reducing dependence on things like cloud services can lower operational
costs related to data storage and processing. For businesses deploying large numbers of
IoT devices, these savings can be substantial. Most edge computing systems utilizing
reinforcement learning on embedded devices deploy special techniques to cope with the
resource constraints of the systems, such as policy distillation techniques [18]. Other pa-
pers highlight the difficulty of deploying reinforcement learning algorithms on autonomous
vehicles in particular, and the implications and necessary human effort of employing such
strategies [16].

2.6. Performance Metrics and Evaluation
As previously mentioned, to properly and accurately measure and evaluate the efficacy
of reinforcement learning (RL) algorithms within embedded systems, an approach that
considers both the inherent and superficial metrics relevant to the operational environment
of these systems is crucial. These metrics provide a view of an algorithm’s performance,
factoring in not only its computational efficacy but also its practical viability in resource-
constrained scenarios.

• Energy Consumption: One of the most important considerations in embedded
systems is energy efficiency. The energy consumed, per decision and on average,
made by the RL algorithm is a critical metric, especially in battery-powered or
energy-harvesting devices where power is limited. Measurement of energy consump-
tion can be achieved through direct electrical measurements of the device during
algorithm operation, allowing for an assessment of the algorithm’s energy efficiency
relative to its decision-making capabilities.

• Computational Load: This is evaluated by the amount of computational resources
the RL algorithm requires during operation, including CPU usage and memory.
Tools such as profilers and memory trackers are utilized to gauge these resources,
providing insights into the algorithm’s complexity and its suitability for low-power
and low-memory embedded devices. This metric is important for understanding the
trade-offs between algorithm complexity and system resource constraints, as well as
properly determining if any practical optimization efforts are worth the work.

• Practical Evaluation Methodologies: To properly assess these metrics, a com-
bination of simulation-based evaluations and real-world empirical testing is often
employed. A simulation allows for controlled experimentation and quick iteration
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over algorithms, while empirical testing on actual embedded hardware provides val-
idation of the algorithm’s performance in practical scenarios. Such methodologies
enable a more complete understanding of an RL algorithm’s behavior under the
specific constraints and conditions of embedded systems.
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3. Implementation
3.1. Training Enviroment and Hardware
The training environment consists of a custom cart pole implementation, or inverted pen-
dulum, specifically built with a real-life replica in mind [19]. The robot has two encoders,
one for determining the position of the cart and another for determining the angle of
the pendulum. From these, both angular and positional velocity can be derived, provid-
ing yet two additional states. The purpose of a custom implementation is to determine
both the feasibility of transfer learning to a physical system and the possible setbacks or
implications of this in future research.

The embedded device used for testing in our work is the OKdo Nano C100 Developer
Kit, based on the NVIDIA Jetson Nano Developer Kit. It houses a 128-core Maxwell GPU,
Quad-core ARM A57 CPU, and 4 GB of 64-bit LPDDR4 RAM. It comes with extensive
GPIO, allowing for further testing and implementation on physical hardware devices.

Table 1. OKdo Nano C100 Developer Kit
Component Specification
CPU ARM A57 CPU
GPU Tegra X1 128-core Maxwell GPU
RAM 4GB LPDDR4
Storage 128GB Micro SD + 16GB eMMC
Power Supply 5V/4A DC power adapter
Cooling System Heatsink (Passive)
Operating System Ubuntu 18.04 LTS

The more powerful contestant is a Machine Learning server with extensive GPU ca-
pabilities and cooling.

Table 2. Machine Learning Server
Component Specification
CPU AMD Ryzen 7 7800X3D

GPU NVIDIA GeForce RTX 4070Ti, 12GiB
GDDR6X, 641 AI TOPS

RAM 32GB DDR4
Storage 3TB NVME Drive
Power Supply Corsair RM1000x Shift 1000W
Cooling System CPU Heatsink + 3 active cooling fans
Operating System Ubuntu 22.04 LTS

3.2. Simulated Environment and Physical Benchmarking
As previously stated, the training environment (simulation) used in our experiment was
custom-built to replicate a real-life inverted pendulum robot. The cart pole problem itself
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is a common task in the realm of reinforcement learning, and a pre-made simulation is
already available with the OpenAI Gym toolkit. We decided not to use that simulated
environment since the provided values of the simulation were not configurable.

To implement a simulation that produces an agent that can be run directly on the
physical robot, firstly we collected relevant measurements from the physical replica. These
measurements were the length of the pole, the mass of the pole, the mass of the pendu-
lum (additional weight), the track length, and the maximum and minimum angle of the
pendulum. The robot used an M500 Series Industrial DC Servo Motor, which operates
at a maximum voltage of 60V . By applying that voltage to the robot, moving the cart
from one side of the track to the other, and measuring the time, we approximated the
maximum cart velocity and angular velocity, which we used later on in our training and
environment visualizer.

Figure 1. Environment
Visualizer

Parameter Value
Pole Mass (mpole) 0.17 kg
Pole Length (L) 0.305 m

Motor’s Max Force (Fmax) 2.3 N
Max Deviation from π (θmax) 25 rad

Track Length (Ltrack) 0.5 m
Pendulum Mass (mpendulum) 0.09 kg

Table 3. System Parameters

3.2.1. Implementation of the Simulated Environment
To implement our simulated environment we used OpenAi’s ”Cart-Pole v1” as a reference
on how our environment should work. The implementation had four variables within it’s
state, (θ, ω, x, ẋ), where:

• θ is the angle of the pendulum,
• ω is the angular velocity of the pendulum,
• x is the cart position, and
• ẋ is the cart velocity.

These states are represented internally as the vector,

s =


θ

ω

x

ẋ


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A method called ”simulate step” was implemented that would take an input of either
0 or 1 and calculate the new state of the environment, the reward obtained from the
current step, and a boolean flag indicating whether the current state is terminal.

The method calculates the force to be applied to the pendulum based on the given
action. This force is determined by the ” calculate force” method, which returns the max-
imum force (in either the positive or negative direction) depending on the action provided.
Using the ”solve ivp” function from SciPy[20], the method integrates the equations of mo-
tion for the pendulum over a small time interval dt, which is set to 0.02s. It utilizes the
”equations of motion” method to define the differential equations that govern the non-
linear system dynamics. These equations are solved numerically using a ”Runge-Kutta”
method (method ”RK45” in SciPy).

After integration, the new state of the pendulum (consisting of the pendulum an-
gle, angular velocity, cart position, and cart velocity) is obtained from the solution of
the differential equations. The method then enforces constraints on the state using the
”enforce constraints” method to ensure that the pendulum remains within valid physical
bounds, such as the track boundaries and maximum angle deviation.

The reward is calculated based on the angular position of the pendulum relative to
a target angle, which is π radians. The method ”calculate reward” computes the abso-
lute difference between the current angle and the target angle. The reward is inversely
proportional to this angle difference, with the formula being:

reward = 1
1 + θ

, θ ̸= −1

Consequently, the closer the pendulum is to the upright position, the higher the reward
it receives. This reward scheme incentivizes the agent to stabilize the pendulum near the
desired upright position, aligning to maintain balance throughout the learning process.

The terminal state method determines if the pendulum’s current state signifies the
end of a training episode. By evaluating if the pendulum exceeds predefined angle or po-
sition limits, it returns True for a terminal state or False otherwise, guiding the learning
process by providing clear episode endpoints and enabling effective response to termina-
tion conditions.

3.3. Implementation of Q-Learning
In general, reinforcement learning is a field of unsupervised learning that has a long his-
tory within the realm of machine learning, being used in machine control [21] and video
games particularly. As such, there are large amounts of approaches to reinforcement learn-
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ing, for our experiment we decided to use Q-Learning and Deep Q-Learning as our two
main approaches. Q-Learning is categorized as a model-free algorithm, the agent initially
performs actions randomly within the observed environment and gradually improves its
performance by exploiting prior knowledge.

First, we devised a basic training loop for the Q-Learning algorithm, that would produce a
Q-table. For the environment, we used the aforementioned inverted pendulum simulation
and the following general algorithm:

1. Observe the current environment state s, where s = (θ, ω, x, ẋ).
2. Choose an action a, where a ∈ {0, 1}, using an exploration strategy (e.g., epsilon-

greedy).
3. Perform the chosen action a.
4. Observe the reward r and the new state s′.
5. Update the Q-table for the current state-action pair, with Q-value, using the Q-

learning update rule (with hyper-parameters α and γ)
6. Set the current state s to the new state s′.
7. Repeat until the environment is within the terminal state or a specified number of

iterations.

Our implementation of the Q-Learning algorithm was written in Python, using the
Python package NumPy [22] for calculations and array arithmetics.

3.3.1. State Discretization
In reinforcement learning, the environment’s state space can be continuous, encompassing
a range of real-valued variables. Given the computational and memory constraints inherent
in practical applications, it becomes necessary to discretize this continuous state space into
a finite set of discrete states. This process facilitates the implementation of tabular solution
methods, such as Q-learning, which operate on discrete state-action pairs.

To achieve state discretization, we first define the bounds for each continuous variable
within the state vector s = (θ, ω, x, ẋ), representing the angle, angular velocity, cart po-
sition, and cart velocity, respectively. The bounds are determined based on empirical
observation and domain knowledge, ensuring they encapsulate the expected range of each
variable within the simulated environment.

The bounds for each variable are defined as follows:
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Lower Bounds (smin) :


2.71

6
0.0
−1.8



Upper Bounds (smax) :


3.58
−6
0.5
1.8



Given the defined bounds, the discretization process divides the range of each variable into
a predetermined number of intervals, referred to as buckets. For instance, with 30 buckets
allocated for each variable, the continuous range is segmented into 30 discrete intervals.
A continuous value is thus mapped to its corresponding bucket, transforming it into a dis-
crete value. This bucketing approach enables the approximation of the continuous state
space with a finite, albeit coarse, representation.

3.3.2. Action Selection Strategy
The selection of actions within the context of Q-learning is crucial for balancing explo-
ration with exploitation, a fundamental challenge in reinforcement learning. Our approach
utilizes the ϵ-greedy strategy, which incorporates a parameter ϵ to manage the exploration-
exploitation trade-off. The ϵ-greedy policy ensures that with probability ϵ, an action is
chosen at random (exploration), while with probability 1− ϵ, the action with the highest
estimated Q-value for the current state is selected (exploitation).

Given

• episode index is the current episode index.
• number episodes is the total number of episodes.
• ϵ is the exploration-exploitation trade-off parameter.
• s is the current state.
• Q is the Q-table containing all Q-values.

our ϵ-greedy action selection strategy is formalized as a piecewise function:

a =


random action from{0, 1}, if episode index < number episodes

4

random action from {0, 1}, with probability ϵ

arg maxa Q(s, a), with probability 1− ϵ

here the probability ϵ is updated according to:
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ϵ =

ϵ× 0.999, if episode index > number episodes
2

ϵ, otherwise

In the action selection process, a random action is chosen with probability ϵ, and the
best-known action according to the Q-table (the action with the highest Q-value) is chosen
with probability 1− ϵ. The value of ϵ decays by a factor of 0.999 after the halfway point
of the total episodes, promoting more exploitation over exploration as the agent becomes
more experienced.

3.3.3. Updating the Q-table
To store the Q-values in memory during training, a Q-table is used. A Q-table in our
implementation is represented by a multi-dimensional array. It consist of three columns,
a column containing the discretized states, and two columns containing the Q-values for
the two possible actions.

Q-Table
State Action 1 Action 2

(θ1, ω1, x1, ẋ1) 0.75 0.60
(θ2, ω2, x2, ẋ1) 0.90 0.50
(θ3, ω3, x3, ẋ1) 0.65 0.80

... ... ...
(θn, ωi, xj, ẋk) x y

Table 4. Example of a Q-table implementation.
The Q-learning algorithm updates the Q values based on the equation:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

where

• s is the current state.
• a is the chosen action.
• s′ is the new state after taking action a.
• r is the reward received after taking action a in state s.
• γ is the discount factor.
• α is the learning rate.
• maxa′Q(s′, a′) is the max Q-value for the new state s′ across all possible actions a′.

We further modify this update function by incorporating a terminal state parameter,
t, as follows:
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Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′) · (1− t)−Q(s, a)]

The term (1 − t) nullifies the future reward component γmaxa′Q(s′, a′), for example
when the cart-pole hits the end of the track, discouraging such behaviour in future training.

3.4. Software Optimizations for the Q-Learning implemen-
tation

To be able to train the agent directly on an embedded system in a reasonable amount of
time, the implemented code needed to be optimized. The baseline algorithm, including all
of the hyper-parameters, shall remain the same to have fair comparable results of training
between the un-optimized and optimized code. To ensure that all algorithms achieve the
same rewards in the same amount of iterations a default random seed was set before the
training training.

To optimize the implementation, the code was first stripped of any possible abstrac-
tions that could slow down the execution time. This means that the code was rewritten
to only utilize low-level data structures available in Python. Second, all possible I/O
operations such as print statements were removed during the training. To validate our
assumption that such operations degraded the performance of our implementation, we ran
our original code multiple times with and without any print statements during training.
After this, we concluded that print statements significantly degraded performance and
decided to remove them entirely during training.

These optimizations provided better performance results, but we felt that these results
were still not satisfactory to be able to train the agent on an embedded system. Python
can be a bottleneck in performance due to its interpreted nature and dynamic typing. To
mitigate this and further decrease execution time and resource consumption a just-in-time
(JIT) compiler, Numba [23], was used to compile our Python code into native optimized
machine code.

3.5. Implementation of Deep Q-Learning
Deep Q-learning (DQL) differentiates from Q-learning by not utilizing a Q-table to store
action rewards in memory. Because of this the state of the environment also doesn’t have
to be discrete. Instead, the state is sent into a neural network which predicts Q-values.

A major hurdle in our project is balancing performance with computational efficiency
on the embedded system. Neural networks are adept at capturing the nonlinearity in
systems. Thus, our neural network’s baseline should start with a model that approximates
the behavior of the autonomous system using a linear operation. This linear model acts as
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an initial simplification, which we can use to understand the minimum complexity required
for the task before considering more computationally intensive non-linear models. This
would entail only one linear activation layer for the neural network:

{
Output layer→ Dense(2, activation = linear)

The neural network architecture (NNA) we ended up using for this problem was cho-
sen after many trial and error attempts at training the agent. We wanted results that
could parallel the performance and training quality of the prior Q-learning solutions, while
having a reasonable execution time. Different neural network architectures would either
produce sub-par training quality results while having a short execution time, or produce
high quality results with an execution time of hundreds of hours long on desktop environ-
ments. After experimentation, the NNA that provided us with a good balance of training
quality and execution time was the following:


Input layer→ Dense(128, activation = elu, input dim = 4)

Hidden layer→ Dense(64, activation = elu)

Output layer→ Dense(2, activation = linear)

In our implementations of DQL we used the same ϵ-greedy approach to choosing actions
within our environment as in the Q-learning implementation. But, instead of exploiting
the Q-table when the epsilon value gets decreased we use the neural network to predict
the next action. To increase the training efficiency, we use an experience buffer solution to
store experiences in memory that are randomly sampled during training and used to aid in
training the network. The experience buffer, denoted by E = {e1, e2, . . . , en}, consists of
tuples ei = (s, a, r, s′, t), where s is the current state, a is the action taken, r is the reward
received, s′ is the next state, and t is the termination signal. These tuples are sampled
from E to perform updates on the network.

During the training process, each episode an action is selected and the reward for that
action is calculated. Then the values of that episode get stored in the experiences buffer,
the training of the network doesn’t occur until there are enough samples to form a batch of
experiences, the batch size is defined as a hyper-parameter. Once enough experiences are
acquired from past episodes, for each experience in the batch, a Q-value is predicted using
the neural network, and a target Q-value is calculated by incorporating the reward and
the maximum Q-value for the next state (with discount factor, γ, applied). The neural
network is then fitted with the predicted and target Q-values and trained for 100 epochs.

The discount factor, γ, remains the same as in the Q-learning implementation, the
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batch size of the experience buffer was set to 100.

3.5.1. Implementation of Deep Q-Learning with fixed Q-Value Targets
DQL with fixed Q-value targets is a variant of DQL where instead of a model predicting
values and setting it’s own Q-value targets, a ”target” model is used to define Q-value
targets instead. A target model in this case is just a copy of the ”online” model. Fixed
Q-value targets helps in reducing training time and mitigating the issues associated with
using the same network for both action selection and target calculation. By keeping the
target network fixed for a certain period of time and then periodically updating it based on
the update period hyper-parameter (in our case every 10 episodes for 100 episodes total),
the algorithm can learn more effectively and converge to better policies.

Due to the usage of a target network some changes have to be made within our im-
plementation. During the sampling process of the experiences buffer, another batch gets
sampled in order to facilitate the calculation of the target Q-values for each transition
sampled from the experiences buffer. This target network calculates the Q-values with the
discount factor applied for this batch, instead of the online network. These online network
is then again fitted with the predicted and target Q-values and trained for 100 epochs.
After a certain number of episodes, decided by the update period hyper-parameter, the
target network gets updated with the weights of the online network.

3.5.2. Loss Function for DQL Implementations and Differences
Our two DQL variants share the same simple mean squared error loss function:

MSE = 1
n

n∑
i=1

(xi − yi)2

Where xi and yi are true and predicted Q-values. When it comes to hyper-parameters; the
batch size of the experiences buffer remained 100 in both implementation, the discount
rate, γ remained 1 in all implementations and the initial ϵ value remained 0.2 in all
implementations. Since DQL with fixed Q-value targets achieved better rewards in less
episodes during experimentation, the epsilon value was reduced at a lower threshold for
that implementation:

ϵ =

ϵ× 0.999, if episode index > number episodes
5

ϵ, otherwise
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4. Experiment
4.1. Experiment Setup
Our experiment involved running three variants of Q-learning algorithms, defined in the
Implementation (3.1) section. We will refer to the implementations as Model-less Q-
learning (including the same implementation with software optimizations, described in
section 3.1), Deep Q-learning, and Deep Q-learning with fixed Q-value targets. These
variants were chosen to represent different approaches to Q-learning, each with its advan-
tages and considerations.

To maintain consistency and ensure repeatability of results, all algorithms were run
using the same random seed, specifically seed 42. This approach helps eliminate random-
ness during the exploration phase of the ϵ-greedy algorithm of the implementations and
ensures that any observed differences in performance are due to implementation variations
rather than random initialization.

The hyper-parameters used for Model-less Q-learning were set as follows:

• Learning rate (α): 1
• Discount factor (γ): 1
• Exploration rate (ϵ): 0.2

These hyper-parameters were chosen based on prior research and trial-and-error to
provide a balanced exploration-exploitation trade-off and encourage convergence towards
optimal policies.

Each Q-learning variant was trained for a total of 15,000 episodes. This episode count
was determined based on pilot experiments and is sufficient to allow the algorithms to
learn meaningful strategies and converge toward stable policies within a reasonable time
frame.

Details regarding the parameters and setup for Deep Q-learning and Deep Q-learning
with fixed Q-value targets were:

• Learning rate (α): 1
• Exploration rate (ϵ): 0.2
• Experience batch sample size: 100 experiences

For the variant with fixed Q-value targets, the target network was updated every 10
episodes. This approach helps stabilize training by reducing the potential for overestima-
tion bias and improving the overall convergence of the Q-values.

The number of episodes varies between the deep Q-learning implementations, with the
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regular deep Q-learning (DQL) being trained for 1000 episodes and the deep Q-learning
with fixed Q-value targets trained for 100 episodes. During prior experimentation, these
episode counts provided comparable training quality, and effectiveness in acquiring optimal
policies within the environment was similar, within the same reasonable time frame.

The experiments were conducted on both embedded and desktop systems, utilizing
the available hardware resources such as GPUs (using CUDA and TensorFlow) and CPUs.
This setup allows us to compare the performance of Q-learning variants across different
hardware configurations and assess their scalability and efficiency in resource-constrained
environments.

4.2. Implementation Evaluation
The evaluation of our implemented models and algorithms involved several key compo-
nents, including reward analysis using reward plots and custom visualizations of the system
dynamics. These evaluation techniques allowed us to assess the performance, convergence,
and behavior of our models comprehensively.

4.2.1. Reward Analysis
To evaluate the learning progress and performance of our reinforcement learning models,
we computed and analyzed the cumulative rewards obtained during each episode. The to-
tal rewards accumulated over time provide insights into how well the models are learning
and optimizing their policies to achieve the desired objectives. We utilized the Python
library Matplotlib to generate plots depicting the trend of total rewards across episodes
for each variant of the implemented algorithms.

4.2.2. Custom Visualization
In addition to reward analysis, we developed a custom visualizer, specifically tailored
to visualize the dynamics of our own inverted pendulum simulation environment. This
visualizer generates animated GIF recordings that illustrate the behavior of the pendulum
in response to different actions and environmental conditions. The visualizations provide
a qualitative understanding of how the models control and stabilize the pendulum over
time.

The visualizer allows interactive exploration of the pendulum’s movements and displays
relevant information such as angle, angular velocity, cart position, and cart velocity during
the simulation. The visualizer can also be run interactively, where users can apply actions
(left or right) to observe the system’s response.

By combining reward analysis with dynamic visualizations, we were able to holisti-
cally evaluate the performance and behavior of our reinforcement learning implementa-
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tions. These evaluation techniques provide a comprehensive understanding of how well our
models learn and adapt to the complex control task of balancing an inverted pendulum,
facilitating informed decision-making and further refinement of the algorithms.

4.3. Performance Metrics
The primary focus of our thesis is on the metric collection and comparative analysis of
running the implemented models on the Jetson Nano embedded system versus a tradi-
tional desktop system. This evaluation aims to assess the performance, computational
efficiency, and resource utilization of our reinforcement learning algorithms in different
hardware environments.

4.3.1. Metrics Collection on The Embedded System
During the training of our reinforcement learning models on the Jetson Nano embedded
system, we utilized ”jtop” (a wrapper around the tegrastats utility from NVIDIA) to
gather real-time system metrics. These metrics provide valuable insights into the system’s
performance, resource utilization, and operational characteristics throughout the training
process. The following metrics were collected and analyzed on the embedded system:
Time, CPU and GPU Utilization, Memory Utilization, CPU and GPU Temperature, CPU
and GPU Voltage, Total Voltage and Current, and Average Power Consumption.

By tracking CPU and GPU utilization, we can monitor the system’s performance
and workload distribution during training. CPU and GPU temperature readings give
us insights into thermal conditions, overheating possibilities, and operation stability over
extended training sessions. Voltage, current, and power consumption metrics contribute
to assessing the energy efficiency of the Jetson Nano during training. Optimizing power
usage is crucial for embedded systems to prolong device lifespan and reduce operational
costs. Memory utilization metrics offer insights into memory usage patterns, allowing us
to potentially track memory-related issues during training.

4.3.2. Metrics Collection on The Desktop Environment
To achieve a similar quality of metrics, for the desktop environment python libraries like
”psutil”[24] and ”pynvml” (a Python library for collecting Nvidia GPU metrics), alongside
the NVIDIA System Management Interface (nvidia-smi)[25] are used to collect metrics
regarding CPU and GPU usage. The following metrics were collected and analyzed on
the desktop environment: CPU and GPU Utilization, CPU and GPU Temperature, CPU
and GPU Power consumption, and overall Memory Utilization.

The collected metrics have the same importance as the ones for the embedded
systems. They can serve as a basis for future data-driven decision-making, allowing for
more informed optimizations, and opportunities for troubleshooting performance issues.
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5. Results and Discussion
5.1. Reward Plots for Classic Q-Learning and Optimized

Q-Learning Using Numba
The reward plot for both the Q-Learning and Numba Q-Learning implementations were
generated by training the agents for a total of 15000 episodes. These plots provide insights
into the agents’ learning progress and performance over the course of training.

Figure 2. Q-Learning and Numba Q-Learning reward plot (CPU)

Within our implementation, the ϵ value in the ϵ-greedy action selection algorithm be-
gins to decline at the halfway point during training. The reward plot clearly illustrates the
distinction between the exploration and exploitation phases of the agents’ learning pro-
cess. During the initial episodes, the agent is in the exploration phase, where it is actively
exploring the custom environment and learning optimal strategies. This is characterized
by lower reward values, typically ranging between 20 and 200 reward points.

During this exploitation phase, the agent consistently achieve higher reward values
compared to the exploration phase. The reward plots show that after the 7000th episode,
the agent achieves between 500 and 1900 reward points on average. This indicates that
the agent has successfully learned to exploit the environment to maximize rewards using
the strategies acquired during the exploration phase.

Using our custom built visualizer to assess the performance of the agent, we observed
that the agent successfully balanced the inverted pendulum for approximately 14 seconds.
During this time the agent kept the pendulum near the middle point of the track, between
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20cm and 30cm of the track length (50cm).

5.2. Reward Plots for Deep Q-Learning and Deep Q-Learning
with fixed target values

The reward plot for Deep Q-Learning was generated by training the network for 1000
episodes, the network is trained for 100 epochs. The plot for Deep Q-Learning with fixed
target values was generated by training the networks for 100 episodes with the same
amount of epochs.

Figure 3. Deep Q-Learning (top) and Deep Q-Learning with
fixed target values (bottom) reward plots (GPU)

Within these implementation, the ϵ value in the ϵ-greedy action selection algorithm
starts getting reduced at the first quarterly point during training, which can be reflected
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in Figure 3.

While with the Q-Learning reward plot we can clearly see a big divide between the
exploration and exploitation phases of the learning process, here the difference is less
noticeable at first. The agents peak higher when it comes to maximum reward points
earned overall, with DQL achieving 5900 points at it’s peak while DQL-T achieving 2600
points at it’s peak. In comparison, the Q-Learning agent which reached a maximum of
1900 points but had much more consistency in reaching higher rewards during training.

The results of running the agents on the visualizer showcased the differences in the
agents learned strategies between implementations. For DQL, the agent managed to keep
the inverted pendulum balanced for about only 4 - 5 seconds. It accomplished this by
rapidly moving between the near end points of the entire track, between 5cm and 45cm of
the track length (50cm). The environment had the ends of the track marked as terminal
states, as so the agent completely stopped once it hit one of the edges. The DQL agent
seemed to struggle with the task and adopted a much less precise strategy in comparison
to the Q-Learning agent. The agent’s learned strategy seemed to be to constantly move
the cart in the direction that the pendulum was leaning at, which would’ve been a better
strategy if not for the terminal states at the ends of the track length.

For DQL-T, the agent managed to keep the inverted pendulum balanced for around
10 - 11 seconds, a much better result than what the DQL agent achieved. The agent
moved the cart much less rapidly than the DQL agent did, slowly moving the cart from
the middle of the track (25cm of the track length) to the leftmost side (5cm of the track
length) in the first 8 - 9 seconds of balancing. Then the agent proceeded to balance the
pendulum for few more seconds before hitting a terminal state and stopping.

5.3. Benchmark Metrics
5.3.1. Jetson Nano
The benchmark process for the embedded measures the CPU, GPU, and memory uti-
lization, along with temperatures of aforementioned processing units and their respective
power utilization in watts.

This is done in order to cover one of our main goals for our research: to determine
the differences in computational load, energy consumption, and where the discrepancies
truly lay. These metrics were measured by simply creating two processes, one for the
actual training and another for taking one-shot measurements of device status, as previ-
ously stated, in a scheduled manner. The two processes run alongside each other, with
the benchmarking process having little to no effect on the actual execution of the algo-
rithms/networks.
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The metrics in question aim to display the overall efficacy and effect training has on
the respective system, measuring values of computational/memory load in percent, tem-
perature in degrees Celsius, and power consumption using watts.

5.3.2. Average Benchmark Metrics
Table 5. Average Metrics for Different Training Types

Type CPU
(%)

GPU
(%)

Mem
(%)

CPU
Temp
(C)

GPU
Temp
(C)

CPU
Pwr
(W)

GPU
Pwr
(W)

CLASSIC 22.59 0.00 0.38 46.34 44.61 1.22 0.0
NUMBA 22.93 0.00 0.41 46.52 44.64 1.22 0.0
DQL GPU 22.71 7.83 0.61 47.68 44.36 1.39 0.96
DQL CPU 23.07 0.00 0.42 47.24 45.66 1.26 0.0
DQL T GPU 22.53 6.28 0.62 48.06 44.71 1.36 0.98
DQL T CPU 23.13 0.00 0.42 46.92 45.46 1.25 0.0

Figure 4. Classic Q-Learning Metrics (top) and Numba Q-Learning Metrics (bottom)
reward plots (CPU)

The Figure 4 shows benchmark results for classic Q-Learning and Numba optimized Q-
Learning. Both of these algorithms exclusively utilize CPU computation, with the classic
version maintaining, on average, 22.6% CPU of the CPU and the Numba version 22.9%,
but ever so slightly trending downwards with respect to time. In any other measurements
the two algorithms essentially performed almost the same, with the Numba version being
slightly more consistent and less sporadic with fluctuations in temperature and memory
utilization, but varying more in the power consumption of the CPU. However, the Numba
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optimization was approximately 30 minutes faster than the standard, unoptimized version.
This proved to be a significant improvement with little effort, yielding an improvement
of 33% from the classic Q-Learning to the Numba Q-Learning, and altogether the classic
and Numba approach took 1h and 33min and 1h and 2min to complete, respectfully.

Figure 5. Deep Q-Learning Metrics (top) and Deep Q-Learning with Target Network
Metrics (bottom) (GPU)

Our next batch of measurements (Figure 5), for Deep Q-Learning and Deep Q-Learning
using a target network, were GPU-centric, as the general purpose of these trials were
conducted with parallel computing in mind, based on neural networks and neural networks
utilizing a target network. These networks, albeit not particularly complex or large, took a
significant amount of time to complete. The processes required to perform neural network
training are inherently more complex and typically introduce more overhead, which, for our
use-case, did not seem to offer any advantage in either training time or resource utilization.
Standard Q-learning proved to be more data-efficient in an autonomous environment such
as this, where the state and action spaces are relatively small and well-defined. In contrast,
our DQL approach seemed to require a larger amount of interaction with the environment,
even though the state-space was relatively small, thereby increasing the training duration.
The model training was reduced to 8 epochs for these implementations due to measuring
convenience.

On average, the standard DQL approach and DQL with a target network essentially
performed the same, with regards to resource utilization. The DQL approach using a
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target network seemed to have a stronger regression towards its mean when it comes to
temperature and power consumption, indicating a stronger stability in the operation of
the system. The DQL using a target network also completed training 50.12% times faster
than the regular DQL training, which is a significant improvement in time. We believe this
displays a possible improvement in hardware utilization between the two, and potentially
less overhead between the CPU and GPU.

Figure 6. Deep Q-Learning Metrics (top) and Deep Q-Learning with Target Network
Metrics (bottom) (CPU)

The final batch of measurements (Figure 6) are for the DQL and DQL using a target
network but instead ran exclusively on the CPU. These essentially do the same thing the
GPU-centric version does, but on the CPU instead. The standard DQL implementation
took the longest to complete out of the six training types, and the DQL using a target
network was the fastest out of them all. This is interesting, but not all that surprising
considering the nature of our autonomous system.

The CPU version of the DQL training used less memory and less power, on average,
than the GPU version, with the target network implementation scoring lower on resource
usage overall with a better time delta.
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5.3.3. Machine Learning Server
The benchmark process for the machine learning server measures the CPU, GPU, and
memory utilization, along with temperature for the GPU and measurements of aforemen-
tioned processing units and their respective power utilization in watts.

5.3.4. Average Benchmark Metrics
Table 6. Average Metrics for Different Training Types

Type CPU
(%)

GPU
(%)

Mem
(%)

CPU
Temp
(C)

GPU
Temp
(C)

CPU
Pwr
(W)

GPU
Pwr
(W)

CLASSIC 100.24 0.00 1.76 64.99 42.59 33.53 0.00
NUMBA 100.32 0.00 1.93 63.91 40.83 34.20 0.00
DQL GPU 106.47 0.01 4.09 58.88 49.56 37.25 0.01
DQL CPU 106.44 0.00 2.00 59.64 41.55 36.11 0.00
DQL T GPU 106.67 0.02 4.06 57.55 49.43 37.26 0.02
DQL T CPU 107.28 0.00 1.96 59.74 40.28 36.30 0.00

Figure 7. Classic Q-Learning Metrics (top) and Numba Q-Learning Metrics (bottom)
reward plots (CPU), ML Server

Same as the previous metrics, the first batch of training was conducted using the
Q-Learning implementations. On Figure 7 we can again see that these implementations
exclusively utilize CPU computation, albeit with significantly more computational power
and speed.

It is clear to see that the machine learning server used an abundant amount of execu-
tion power regardless of the training type, and it could be worth questioning if the speed
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Figure 8. Deep Q-Learning Metrics (top) and Deep Q-Learning with Target Network
Metrics (bottom) (GPU), ML Server

Figure 9. Deep Q-Learning Metrics (top) and Deep Q-Learning with Target Network
Metrics (bottom) (CPU), ML Server
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at which the training was finished outweighs the environmental and energy impact it has.
Nonetheless, these results only become interesting when compared with the energy-to-
work ratio of the embedded system.
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5.4. Performance per Watt for Embedded System and Ma-
chine Learning Server

This metric serves as a general indicator of energy efficiency in most computational sys-
tems. It not only helps in assessing the energy consumption relative to the computational
output but also helps in making informed decisions about hardware utilization in energy-
sensitive environments. In our case, in the context of training various reinforcement learn-
ing models, measuring performance per watt allows for a comparative and more objective
analysis of energy efficiency across different hardware configurations and algorithms. The
formula used to compute this metric involves several steps:

1. The average power consumption (in watts) is calculated as the mean of power con-
sumption readings during the training session

2. The total training duration is converted from seconds to hours.
3. Multiplying the above two yields the total energy consumed during the session in

watt-hours
4. Finally, this energy consumption figure is used to determine how many training

episodes (or computational tasks) are completed per watt-hour, calculated as Total Episodes
Total Energy Consumed

This ratio provides a clear and quantitative measure of energy efficiency, highlighting
how effectively a system converts electrical power into computational results.

Table 7. Comparison of Performance Per Watt Across Devices
Training Type Device CPU Perfor-

mance Per Watt
GPU Perfor-
mance Per Watt

Classic Jetson 7915.26 -
Server 6100.20 -

Numba Jetson 11879.74 -
Server 8534.13 -

DQL GPU Jetson 352.60 496.49
Server 47.29 4.61

DQL CPU Jetson 235.32 -
Server 62.90 -

DQL Target GPU Jetson 72.11 102.22
Server 27.53 2.69

DQL Target CPU Jetson 154.05 -
Server 40.32 -

A few interesting observations arose from these results. The performance per watt,
which as previously stated essentially measures the executed number of episodes per watt-
hour, is clearly different in the two systems in the sense that the Jetson Nano attains far
greater results in this metric than its power-house counterpart. Even though execution
times are superior on the server, the power utilization of the Jetson Nano far outweighs it.
This is obvious in both cases, CPU- and GPU-centric training, considering the embedded
system far better utilizes its GPU capabilities.

While a powerful desktop or machine learning server may complete tasks such as this

31



more quickly due to its more powerful hardware, this speed comes at the cost of effi-
ciency. The Jetson Nano, while slower, uses much less power per unit of work, making it
more suitable for applications where energy consumption is a constraint. Potentially com-
bining this knowledge with further optimization techniques could render the embedded
systems, or energy-constrained environments or applications where operating costs need
to be minimized (edge computing, mobile devices, etc.), a compelling option with the
right domain knowledge and techniques for optimization. Conversely, in scenarios where
time-to-completion is critical, the server might be the preferred choice despite its lower
energy efficiency.

5.5. Execution Times for Embedded System and Machine
Learning Server

On Table 8 and Table 9 we can see the execution times for the implementations on the
embedded system and the machine learning server.

Training Type Execution Time (hh:mm:ss)
CLASSIC 01:33:08
NUMBA 01:02:04

DQL GPU 02:02:50
DQL CPU 03:23:04

DQL T GPU 01:01:16
DQL T CPU 00:31:07
Table 8. Execution times for the Jetson Nano.

For the embedded system the difference between the implementation with and with-
out Numba optimization is around 30 minutes, which can be considered significant in
the context of embedded systems with constrained resources. By leveraging Numba’s JIT
compilation, the Q-Learning implementation benefits from low-level optimizations and ac-
celerated code execution, leading to faster training iterations and reduced overall execution
time.

For the Deep Q-Learning implementation with fixed value targets on the embedded
system, we can see that the implementations performed better while running on the em-
bedded system CPU. Between running the implementation on the GPU and CPU, the
overall difference in execution time was also around 30 minutes. This reduction in per-
formance could be caused by several factors. Depending on the memory architecture of
the embedded system, the CPU may have better access to memory bandwidth, allow-
ing for faster data retrieval and computation compared to the GPU. The implementation
might not utilize the parallel computing aspect of the system GPU to its full potential,
the overhead associated with transferring data between the CPU and GPU memory may
contribute to the increased execution time when running on the GPU. It’s important to
note that during training we made sure no other process was using the system’s GPU.
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This highlights the importance of considering hardware characteristics, memory architec-
ture, optimization techniques, and data transfer overhead in determining the most suitable
execution environment for deep reinforcement learning tasks on embedded systems.

Alternatively, for the Deep Q-Learning, we can see that the implementation performed
better when running on the system’s GPU. Between running the implementation on the
GPU and CPU, the overall difference in execution time was also around 1 hour and 20
minutes. Since this implementation involves only one neural network and doesn’t require
memory swapping between two neural networks like the previous implementation, it could
be that this variant of Deep Q-Learning is more suitable for running on GPU-enabled
systems. Another point to consider is that the resulting agent from this implementation
generally performed worse than the resulting agent from DQL T, while also having a longer
execution time than both DQL T implementations.

Training Type Execution Time (hh:mm:ss)
CLASSIC 00:04:24
NUMBA 00:03:05

DQL GPU 00:34:03
DQL CPU 00:26:25

DQL T GPU 00:05:51
DQL T CPU 00:04:06

Table 9. Execution times for the Machine Learning Server.
In comparison to running the implementations on the embedded system, the execution

times on the machine learning server are, as expected, drastically smaller. All execution
times are improved by 1 hour, with the biggest improvement being the DQL implemen-
tation (around 1 hour and 30 minutes). The two deep q-learning algorithms were both
primarily executed on the CPU as the complexity of the networks was far too low in order
to necessitate the need for utilizing the parallell processing powers of the 4070Ti to its full
extent, which could be attributed to the vast amounts of memory and CPU processing
powers of the machine. It did, however, at all times use 10254MiB, the max amount, of
memory, likely due to the fact that tensorflow automatically allocates all of the available
GPU memory to the running CUDA process unless config.gpu options.allow growth=True
is explicitly set. Doing this, the approximate memory usage on the GPU hovers around
340MiB. Furhtermore, increasing the batch size to 256 units and adding more layers to
the neural network does increase GPU utilization to average at 1%, which rules out any
potential misconfigurations with Cuda or Tensorflow.

On Table 9, we observe that the difference between classic Q-Learning and Numba
Optimized Q-Learning implementations is less significant, suggesting that the optimiza-
tions provided by Numba have less impact in a high-performance computing environment
compared to an embedded system.

We can see that execution time is a big trade-off when training models directly on
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embedded systems. Even so, considering that both systems produced adequate results
with agents that solve the problem of balancing an inverted pendulum, the execution times
underscore the importance of selecting the appropriate computing platform based on the
specific requirements and constraints of the task at hand. While training models directly
on embedded systems may imply longer execution times due to hardware limitations,
it offers advantages such as real-time inference capabilities, direct access to the agents
themselves, and potentially better energy efficiency and performance per watt.
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6. Conclusion
The thesis explored the implementation, performance evaluation, and bench-marking of
different Q-Learning and Deep Q-Learning variants of reinforcement learning, on both
embedded systems and high-performance computing environments. Through empirical
experiments, literature research, and analysis, we have examined the trade-offs and impli-
cations of training models on different computing platforms, with a focus on solving the
problem of balancing an inverted pendulum. The thesis also explores different methods of
optimizing performance and resource consumption.

Our findings highlight the diverse challenges and opportunities presented by train-
ing models directly on embedded systems versus leveraging high-performance computing
setups. The thesis specifically focuses on execution times, agent performances, resource
utilization, possible software and algorithmic optimizations, and possible hardware im-
provements by using GPU-enabled systems for Q-Learning and Deep Q-Learning. Our
conclusions on these points are as follows:

• When it comes to execution time trade-offs, training models directly on embedded
systems incur longer execution times due to hardware limitations, in comparison to
high-end computing setups. However, with appropriate techniques for improving
execution time and the domain knowledge of the underlying systems capabilities,
the amount of power per unit of work can be greatly reduced and offer a compelling
alternative to training outside of the target device or transfer learning. The best-
performing implementations on the embedded system were the classic Q-Learning
implementation with Numba JIT compilation and the Deep Q-Learning variant with
fixed target values (running on the system CPU).

• Observing the execution time metrics, the promising performance of aforementioned
implementations suggests that with software optimizations, and choosing Deep Q-
Learning variants that improve the training times of agents, embedded systems can
still be viable platforms for training and deploying reinforcement learning imple-
mentations. Regarding regular Deep Q-Learning, execution time on the embedded
system improved by running the implementation on the system GPU. This high-
lights the potential benefits of leveraging specialized hardware, such as GPUs, to
accelerate training and improve the efficiency of reinforcement learning algorithms
in resource-constrained environments.

• Despite longer execution times, models trained on embedded systems can still pro-
duce good-performing agents that successfully solve complex tasks, such as the in-
verted pendulum problem.
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• While high-performance computing setups offer faster training times it comes at the
expense of increased resource requirements. The differences in computational load
and energy consumption highlight the better efficiency of resource utilization by the
embedded system during training. However, high-performance computing setups
are better for pre-training models that can then be deployed on embedded systems
to perform actual work, due to their faster training times and higher resources.

• The choice of computing platform influences the effectiveness of hardware and soft-
ware optimizations. Embedded systems benefit more from software optimizations
and improved Deep Q-Learning variants. Comparing the execution times of Deep Q-
Learning implementations on the system’s GPU and CPU, we observed that GPU
execution resulted in improved performance for Deep Q-Learning, and decreased
performance for the variant with fixed target values. This could be attributed to
factors such as memory bandwidth limitations or sub-optimal utilization of GPU
resources, among other reasons. This can perhaps be further explored in future
work.
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Appendices
Appendix A. Custom Visualizations
Bellow are links for videos showcasing our visualization of the agents.

Q-Learning agent, trained for 15000 episodes:

https://youtube.com/shorts/k2z1yEMpFkc

Deep Q-Learning agent, trained for 1000 episodes with 100 epochs during training:

https://youtube.com/shorts/Bib0GPwKCww

Deep Q-Learning with fixed Q-Value targets agent, trained for 100 episodes with 100
epochs during training:

https://youtube.com/shorts/CsGVDGd6Jdk
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